
The Implementation of Parallel Ant Colony Optimization Algorithm based on
MATLAB

Wan Baocheng

Information Technology College,
Jilin Agricultural University,

Changchun 130118, China
Email: wanbaocheng@163.com

Wang Tiane

Information Technology College,
Jilin Agricultural University,

Changchun 130118, China

Wang Zenghui

Information Technology College,
Jilin Agricultural University,

Changchun 130118, China

Abstract—At first the relationship between the volume of
the data transmitted and the transmission time is tested and
the analysis of the data shows that there is a significant
linear relationship between the two in MATLAB Distributed
Computing Engine. Then we give an implementation solution
of the parallel ant colony optimization algorithm , and we also
carried on the computation of a TSP example which shows
a higher speedup and a better performance. All these show
that the it is efficient and effective to use MATLAB to develop
distributed computing application program.

Keywords-distributed computing; ant colony optimization;
MATLAB

I. INTRODUCTION

MATLAB is an outstanding scientific and engineering

computing software owned by MathWorks Inc. It becomes

the standouts in computing software fields because its high-

speed calculation, reliable, rich features and convenience

programming. With the popularity of computer networks,

most computers are connected into a network, and dis-

tributed computing has entered the times of pc(personal

computer). Developing distributed and parallel applications

based on MATLAB would take full advantage of the rich

functions of Matlab and greatly reduce the difficulty and

cost of development, and highly improve efficiency[1]. Math-

works Corporation has timely promoted of the distributed

computing engine and toolbox[2][3], moreover Matlab is a

cross-platform product, and therefore Matlab actually con-

stitute the distributed computing engine and toolbox in het-

erogenous environment. Message Passing interface (MPI)[4],

the most important parallel program tool at present, has al-

ready become the industry standard in parallel programming.

Matlab has also provided the basic support for MPI func-

tions. The distributed computing engine and toolbox, the

commercial product pro-moted by the MathWorks Inc, has

some unmatched advantages compared with other matlab

development environment[5].

As an important member in the Evolutionary Algorithms

(EA) family and meta-heuristic optimization method, ACO

shows good performance in a great deal of complex opti-

mization problems[6][7][8]. Solving some practical issues will

slow down the process of the sequential ACO due to more

number of individuals and substantial calculation in need,

this will make it is hard to meet the practical require-ment.

Therefore parallel the ACO becomes a study hotspot[9][10].

Aimed at this study hotspot, we easily develop the parallel

ACO make use of two toolbox together. The rest of the paper

is organized as follows. Section 2 introduces some contents

on MDCE. Section 3 gives a detailed description of the

implementation process of the PACO followed by a practical

example to test the validity of the algorithm. Finally, a brief

summary is made.

II. MATLAB DISTRIBUTED COMPUTING ENGINE

Before carrying out the distributed computing, we need

to configure the computing environment. The basic process

is: first, start the MDCE service in each computer involved,

and then start Job Manager, start Worker leech on to one of

the Job Manag-ers ( Matlab Session involved in computing

in the background will be started at the meanwhile). All the

Workers leeched onto one of the Job Manage constitute a

Matlab distributed computing environment, and several such

environments can be constructed. Having started the Matlab

in some computer, created a Job Manager example, we could

carry out distributed and parallel computing take advantage

of them.

The workflow is as follow: Discomposing the task into

several and then submitted them to Job Manager, then Job

Manager will appropriately distribute them for evalua-tion

to workers according to the number of the workers and

how many workers are available. After workers complete

the tasks, results will be return to the Job Manager. After

all the workers complete the tasks distributed to them, the

job manager returns the results of all the tasks in the job to

the client session.

Next, we will configure the Matlab distributed computing

environment with two computers as an example. Similarly

we can extend to more computers. We choose Windows

XP SP2, node1 and node2 as our host computers’ names.

MDCE and tool-box are both version 3.1. Create a Job

Manager on node1, then create a Worker in both nodes. Do

2012 Third Global Congress on Intelligent Systems

978-0-7695-4860-9/12 $26.00 © 2012 IEEE

DOI 10.1109/GCIS.2012.62

27



as follow: click the start button-¿run, type the command

cmd, a DOS window will appear, then input the following

commands:

(1) Install MDCE

mdce install

(2) Start MDCE

mdce start

(3) Create Job Manager

start jobmanager-name jm-romotehost node1

(4) Create Worker

startjobmanager -name w1 -jobmanager jm -

jobmanagerhost node1 -romotehost node1

startjobmanager -name w2 -jobmanager jm -

jobmanagerhost node1 -remotehost node2

Now, start the Windows Task Manager at the nodes, you

will see both processes mdced.exe and matlab.exe in the

process option card. Note that close the firewall in the

process of configuration and running MDCE.

III. REALIZATION OF THE PARALLEL ACO

At present, there are two main types of parallel ACOs

: fine-grained strategy and coarse-grained strategy. In this

paper, we give a realization of a coarse-grained parallel ACO

based on MATLAB. The description of the algorithm is as

follows.

Algorithm PACO:
Randomly generate P ant colonies
Send each subcolony and the parameter

values to all nodes
for K cycles

dopar(on nodes)
for loop=1 to P do

Run sequentially ACO
endfor

endpar
Send best individuals to the

neighboring node
endfor(for cycles)

Parameters involved above are explained as follow.

P: number of nodes. K: times for the iteration of the

sequentially ACO.

In order for convenient use, the paralleled ACO is realized

in the form of function. The PACO function is as follow:

function solu = paco(jm, dis, options)

The first input parameter jm is a jobmanager object, input

the following command in the MATLAB command window.

jm = findResource(’scheduler’,
’configuration’, ’jobmanager’,
’name’, ’jm’).

1

3

5

2

4

6

Figure 1. A Workflow of Distributed Computing

Parameter options could be attained from the function a-

cooptimset. Two fields(P and K) will be added.

This function mainly creates a parallel task object and

sets some parameters related. The key is the task pacos

established on it, which is the parallel executed m function

file placed on the workers of each node. Now submit the file

to the parallel job object and run it. Then fetch all the results

,which are made some appropriate process and returned to

the output parameters. Finally, the parallel job object was

destroyed.

Note: To make the function pacos run on both nodes, the

FileDependencies field of the parallel job object should be

set first, and then temporarily send the paco to both nodes.

Of course, copy the file pacos.m to both nodes advance will

do, too. The form of the function is as follow:

function solu = pacos(dis, options).

This function is the core of the PACO , whose body is

designed and developed by the PACO algorithm mentioned

above and the MPI function provided by MATLAB. It

mainly make use of the two MPI functions labSend and

labRecieve. With circle structure, migration for the evolved

subpopulation is made. Note that the sending command is

standard form, which means that block occur or not depends

on the state of the system. However, the receiving command

is block form.

When a ring migration happens in the nodes, the number

of the nodes should be even so that the blocking time can

be reduced. In order to achieve that, the data should be

transmitted as follow: as an example of six nodes, the data

will be transmitted first between nodes linked by solid lines,

then between nodes linked by dotted lines. No matter how

many nodes there are, the total transmission time is nearly

2 times of single transmission time. Show in figure 1.

IV. TESTING EXAMPLES AND PERFORMANCE

ANALYSING

Testing environment: Intel Core 2 Quad CPU Q8300

2.5GHz, the memory on the nodes that run jm is 2G, and

the others are 1G.

First we test the relationship between transmission data

volume and transmission time carried out by the MPI

28



Table I
TRANSMISSION DATA VOLUME AND TRANSMISSION TIME

transmission transmission
data volume(kb)

time(ms)
data volume(kb)

time(ms)

703 51 1653 118
800 58 1800 128
903 65 1953 139

1013 73 2113 150
1128 81 2278 161
1250 89 2450 173
1378 99 2628 186
1513 108 2813 198

Table II
RESLUTS OF REGRESSION MODEL

coef value with 95% confidence bounds R-square

p1 0.06981 (0.06952, 0.07011)
p2 2.224 (1.705, 2.743)

0.9999

function labReceive provided by MATLAB. Transmis-sion

time will be averaged between ten times. Datum are showed

in Table I.

The model is f(x) = p1x + p2 using linear regression, x

represents the volume of data transmitted, while f(x) repre-

sents transmission time. The results returned by MATLAB

are showed in table II.

The result indicates that the data transmitted by MATLAB

obey a linear relation-ship. The increase 1 kb, about 0.07

millisecond will be cost. The linear relationship supplies a

basis for the analysis of the performance of the MATLAB

parallel program.

Take TSP Att48[11] as an example, distance of the shortest

path is 33524 in this problem. PACO is runing on the cluster

constituted by one computer, two computers,four computers

and eight computers respectively.

In order to test the state of the executive time of each

section of the algorithm, some points in paco are chosen.

Start the stopping clock on each nodes where the imple-

mentation of paco begins, point before the migration of the

population or after the evolution of the subpopulation, point

after evolution of the population or before evolution of the

subpopulation, point where the PACO ended on each node.

The operation result statistic is showed in table III.

The total time consumed is about 2 seconds less than the

paco consumed, as has nothing to do with the factors such as

the number of nodes. It may be considered that the starting

Table III
TEST RESULTS OF PACO

Number of node 1 2 4 8

Optimum value 35031 34812 33829 33621
Total time(s) 8.6811 6.887 4.6532 3.6134
Pacos time(s) / 5.4103 3.2951 2.1324
Start time(s) / 0.9214 0.9189 0.9057

Table IV
SPEEDUP(WITHOUT STARTING TIME)

Number of nodes speedup speedup(without start time)

1 1 1
2 1.6 1.9
4 2.7 3.7
8 4.5 7.2

time of the whole parallel job is constant. Not including

starting time, the paco speedup is showed in table IV.

V. RESULTS AND DISCUSSION

From the passage above we can see that developing dis-

tributed and parallel algorithm based on MATLAB platform

is very favorable for scientific and engineering computing

applications users. Experiments are not carry out with rel-

atively more nodes, where situation may change a little.

Multi-nodes case is the future research direction.

ACKNOWLEDGMENT

Project supported by the Foundation for Youths of Jilin

Province (Grant No. 201201095).

REFERENCES

[1] J. Kepner and S. Ahalt. MatlabMPI. Journal of Parallel and
Distributed Computing: 2004,64, 997-1005.

[2] The Mathworks, Inc.: MDCE3.1 System Administrator’s
Guide.

[3] The Mathworks, Inc.: Distributed Computing Toolbox 3.1
User’s Guide

[4] Message Passing Interface Forum: MPI: A Message-Passing
Interface Standard. November 15, 2003. http://www.mpi-
forum.org/docs

[5] J. P.Hoffbeck, M. Sarwar and E. J. Rix. Interfacing MATLAB
with a parallel virtual processor for matrix algorithms. The
Journal of Systems and Software:2001, 56, 77-80.

[6] M. Dorigo and T. Stutzle. Ant Colony Optimization. Bei Jing,
China: Tsing Hua University Press, 2007.

[7] Duan Haibin. Ant colony algorithm: theory and applications.
Bei Jing, China: Science Press, 2005.

[8] Li Shiyong. Ant colony algorithms with applications. Harbin,
China: Harbin Institute of Technologys Press, 2004.

[9] B. Bullnheimer and G. Kotsis. Parallelization strategies for the
ant system. In R.D. Linear Optimization: 1998, 24, 87-100.

[10] M. Middendorf and F. Reischle. Multi colony algorithms.
Journal of Heristics: 2002,8(3), 305-320.

[11] . Jiao Licheng and Du Haifeng. Immune Optimization. Bei
Jing, China: Sciense Press, 2006.

29


